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Tip streaming from slender drops in a nonlinear 
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The deformation of inviscid and slightly viscous drops is studied using slender-body 
theory. The imposed axisymmetric flow is a combination of a linear extensional flow, 
with velocity u, = G,z along the axis of symmetry, together with a cubic flow 
u, = G,z3 .  When G,/G, is sufficiently small the viscous drop breaks in a manner 
similar to that described by Acrivos & Lo (1978). For larger G, > 0 the drop breaks 
by a rapid growth a t  its end. Steady-state experiments in a 4-roll mill show the 
ejection of a column of liquid from the tip of the drop, though this is probably caused 
by a change in the pressure gradient rather than the mechanism described above. 
The ejected column then breaks into droplets via the Rayleigh instability. It is 
hypothesized that one or other of these mechanisms corresponds to tip streaming as 
observed by Taylor (1934). 

1. Introduction 
Recent work on the deformation of small emulsion droplets a t  low Reynolds 

numbers has concentrated on drops sufficiently small that the imposed flow is linear. 
When the viscosity pi of the drop is small compared with that of the surrounding 
fluid, p, slender-body theory (Buckmaster 1972, 1973; Acrivos & Lo, 1978; Hinch 
& Acrivos, 1979) predicts the slender pointed drops observed by Taylor (1934), but 
not his observation that small drops can be ejected from the pointed ends, a 
phenomenon known as tip streaming. Such analyses break down close to the tip, and 
Sherwood (1981) suggests that the ends of the drop are actually rounded. 

Here we study drops that are sufficiently large that the non-linear terms of the 
imposed flow must be included. The Reynolds number is assumed still to  be small, 
and the flow u = (u,,O,uz) has the form 

u, = G,z+G,z3, u, = -1G r-SG 2 3 rz2 ,  p = 3G3p(z2-$r2), 

where p is the pressure. Quadratic terms are excluded to maintain symmetry of the 
drop about z = 0. We have in mind the deformation of a large drop a t  the centre of 
a 4-roll mill, and in $5 we shall present some experimental results. 

I n  a weak flow the drop is deformed only slightly away from spherical. It is 
straightforward to compute this deformation, but the rcsults are of little interest to 
us here. Instead, we assume h = pi/p + 1. The drop becomes elongated a t  sufficiently 
high flow strengths, and we compute its shape by means of slender-body theory. We 
deal first in $2 with a drop of zero viscosity, and proceed in $3 to a drop which is 
slightly viscous. In  $4 we study the evolution of drop shapes with time. 
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F I ~ ~ J R E  1 .  The slender drop. 

2. Inviscid drop 
The drop, with length 1 and radius R(z) (Izl d I )  is illustrated in figure 1. The 

imposed flow is disturbed by the presence of the drop, and this disturbance may be 
represented by a linc distribution of sourecs & ( z ) .  We follow a presentation similar 
to  that of Hinch & Acrivos (1979). The disturbance flow near the drop is a radial flow 
u, = &/2xr, with an associated stress rrT = - p Q / x r 2 .  Adding to this the stress due 
to  the undisturbed flow, and substituting into the normal stress balance gives 

Y PQ p o - -  = pal + ~ P G ,  z2 + 7, R E R  

where y is the coefficicnt of interfacial tension between the drop and the surrounding 
fluid, and p ,  is the constant pressure inside the drop. Our other condition on the 
boundary is that  the flow is tangential to the surface of the drop: 

:(G,+3G,z2)R = (G1z+G3z3)R'. Q 
2xR 

Scaling all lengths by I, and scaling R by y/,uGll, we obtain 

(z+G,G;1Z2z3)X = @-l-R(1+~G3G;1Z2z2) (lzl d l),  
2PGl 

with R( f 1 )  = 0. If G, = 0 this has the solution 

R=:(1-z2), 

where p,/2puG = P, say, is chosen to be 3 for reasons discussed by Acrivos & Lo. If 
the drop has volume 4xa3, then 

1 = 2 0 a ( / ~ G , / y ) ~ .  

If G, + 0, R(z) will no longer be parabolic. To ensure analyticity a t  z = 0, we look 
for a power-series solution of the form 

R = a,+u,z2+ ..., 
where 

9a, a, 1, 
a, = - 

1 
a, = ~ 

2(P- 1) ' 2G, (3  - P)  ' 

Since a,, -a2-$  as G3+0,  we conclude that 

9G, l2  G3 

2Gl Cl 
p - 3-- as -+0.  
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G’ 

FIGURE 2. Deformation curves for an inviscid drop : non-dimensional length ZIG:li as a function of 
dimensionless strain rate G*. R would hold if the drop maintained a parabolic shape. 

1 0 
2 

FIGURE 3. Inviscid drop sllape R(z) for various (p = G,12/(-r‘, > 0. 

It is straightforward to solve ( 2 )  numerically, using P as a shooting parameter to 
ensure that R(1)  = 0. We obtain R = R(z, $), where 

The volume of the drop is 

E L M  144 
10 
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FIGURE 4. Inviscid drop shape R(z) for various 4 = GSZ2/6, < 0. 

which is a function of q5 only. This suggests that  the appropriate dimensionless rate 
of strain is 

G" = ~ (G,* a2): 

and the appropriate dimensionless drop length is lG,*b. I n  figure 2 we show ZJG,*19 as 
a function of G* for the two cases G, 3 0, together with a comparison curve which 
would hold if the drop maintained a parabolic shape. We see that if G, is positive the 
drop does not grow as rapidly as i t  would if G, were zero or negative. The fluid does 
not wish to enter a region of high pressure. The surrounding medium is forced in this 
direction by viscous stresses, but no such stresses act on the drop. Solutions break 
down when G,*P = - 1, when the tip of the drop is a t  a stagnation point. I n  figures 
3 and 4 we show representative drop shapes for G, 3 0. Note that the vertical scale 
in figure 3 differs from that in all the other figures of 382 and 3, and also that cusp-like 
points appear when G, > 0. I n  the experimental results of $5  we shall see shapes 
similar to those of figure 3, and we shall appeal to the above pressure arguments to 
explain the ejection of a fluid thread from the drop tip. 

Y 

3. The viscous drop 0 < h % 1 

We follow the same arguments as before, though we initially include time- 
dependence. The pressure pi, inside the drop is no longer uniform and a pressure 
gradient is established in order to ensure a return flow of fluid towards the centre 
of the drop: 

4 d .  
8pi dz 

*ln - (G, 2 + G, 2,) R2 + joz 2RRdz. 

The normal stress balance is as before ( l) ,  whilst the kinematic boundary condition 
becomes 

R + (G,z + G,z3) R' = &-+(G, 2nR + 3G,z2) R, 
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from which we obtain 
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Y RPin 
2P 2P 

B + (G, z + G,z3) R' + R(G, +;G,x2) + --__ = 0, 

where 

pi,  = p ,  + 8pi I' {(GI z + G, 2,) RW2 + R-' Joz 2RRdz] dz. 
0 

Differentiating with respect to z puts the governing equation in the form 

(G,z+ G,z3) (RR"- R'2) + (G, + 3G3 z 2 )  RR' + 9G3 zR2+ R, R 

-&R'--=4h C , ~ + G , Z ~ + ~ R - ~  
yR' 2P i 

Note that the inclusion of cubic terms has not substantially modified the governing 
equation found by Acrivos & Lo. Scaling all lengths by 1, then scaling R by y/G,,ul 
and dropping time dependence we obtain 

( ~ + G , * l * ~ z ~ )  (RR"-Rr2)+ RR'(1 +3G,*1*2z2)+9G,*l*2zR2-~R' 
= 4 P ( ~ + G , * l * ~ z ~ ) ,  ( 3 )  

with R( +_ 1) = 0, where I* = lhf/a and G* = G,paAi/y are the non-dimensional length 
and flow strength used by Acrivos & Lo, G,* = G,a2/G,hf and r = G*l* = Acrivos & 
Lo's K-l. G,* depends on the form of the flow, G,/G,, but not on its absolute magnitude, 
which varies with G*. It is therefore appropriate to watch the deformation of an 
individual drop by varying G* whilst holding G,* constant. 

When G, = 0 there is an analytic solution 

R(z)  = z ( l - z 2 ) ,  

where 

DL = 4(1+(1-64r2)?), 

and on integrating to find the volume of the drop, we obtain 

When G, $. 0 we must solve (3)  numerically. We first examine the solution near x = 1. 
Expanding as a power series in s = 1 - z ,  we look for a solution of the form 

R = a,s+w,s2+bsP+ ..., (7) 

where 

1 & (1 - 64r2( 1 + G,* 1*2)2)i 
4( 1 + G,* Z*2 )  

a, = > 

and from linear theory we know that we should take the + sign when G* is small. 
Thus 

a, < $(1+ G,*c!*~) 

and 
1 

2a,( 1 + G,*1*2) < 2' 
p = 3 -  

10-2 
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' 10.0 

G* 
FIGURE 5.  Deformation curves for viscous drops, presented in the same manner as Acrivos & Lo 
(1978). Dimensionless length I* = Ihi/a as a function of the flow strength Q* = G,pahby-', for 
various nonlinear flows ~r;  = G,a2/CJ,h:. 

but b is not determined by the expansion. At O(s) we obtain 

4 r 2 (  1 + 3 ~ :  z*2) a = -  " .J ' 
1 - 2a,( 1 + G,Z*') 2 

The numerical scheme was as follows. First I* was chosen (with I* initially close to 
zero, so that G,*1*2 was small and the drop shape close to that for a linear flow). G* 
and b were then guessed and the expansion (7 )  was used to give R close to the tip 
z = 1 .  A fourth order Runge-Kutta method was used to integrate the differential 
equation back towards the origin, stopping short to avoid the singularity there. The 
solution was then extrapolated into z = 0. R'(0) should be zero, and the volume of 
the drop should satisfy 

iG*2/1 = j' R2dz. 

G* and b were varied until these two conditions were satisfied. 1" was then increased 
and the process repeated. I n  figure 5 we show the resulting deformation curves. When 
G,* = 0 the drop length grows as the flow strength increases, until G* = 0.148 and 
I* = 0.63. There are no steady solutions for higher values of G*, and the drop grows 
ever longer, maintaining a parabolic shape (Buckmaster 1973). This is in agreement 
with the analytic deformation curve (6). The curve continues to higher values of 1". 
Acrivos & Lo showed that the lower portion of the curve is stable to infinitesimal 
disturbances and the upper portion unstable. G* = 0.148 corresponds to a point of 
neutral stability. The numerical scheme was satisfactory as long as 

0 

1 - 6 4 r y i  + ~ , * 1 * 2 ) 2  > 0, (9) 
so that  the square root in the expansion near the tip (8) is real. When G,* = 0 a second 
branch of (unstable) solutions exists, corresponding to  the choice of the negative sign 
in (5). This could not be found numerically since /3 < 1 and the expansion of R(s) for 
small s breaks down. Numerical bieakdown occurred when I* = 1.0, G* = 0.125. 
Analytically, breakdown should have occurred when 1* = 1.12 and G* = 0.1 12. Thus 
our numerical length is too small by 12 yo, giving an idea of the accuracy achieved 
at the extreme points of the curves. I n  figure 6 we show drop shapes when G,* = 0 
for comparison with later results for shapes in nonlinear flows. 
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FIGURE 6. Viscous drop shapes in a linear flow, a,* = 0, as given by (4). 
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FIGURE 7. Viscous drop shapes when a,* = - 1.0. 

The deformation curves for C: < 0 are similar to those for a linear flow: the 
mechanism of break-up is basically the same and is discussed in $4. As in the inviscid 
case, the drop length grows more rapidly than when G, = 0. Typical drop shapes 
are shown in figure 7 .  

When G, > 0 the drop length grows more slowly. Drop shapes are shown in figure 
8. The drops become more pointed as G: increases, but from the expansion (6) near 
:: = 1 we see that cusps never develop. If G,* < 0.1 the deformation curve turns back 
on itself, and break-up occurs as for the linear flow. If G,* > 0.1 we find that (9) is 
violated before the curve turns. There are no steady-state solutions for higher flow 
strengths, and the mechanism of drop break-up is different. It is difficult to study 
this breakdown of the solution, as only a numerical solution is available to us. Some 
insight can be gained by re-examining time-dependent stability in the case G3 = 0. 
Suppose the drop shape has the form 

R = a( 1 - z2 + & ( a )  eat) 
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FIGURE 8. Viscous drop shapes when G: = 1.0 

FIGURE 9. Marginally stable volume-preserving perturbation (1 1) with rapid growth a t  the drop 
tip, corresponding to the case 6 4 P  = 1 in (5) .  

for some small 6. I n  the marginally stable case = 0, g satisfies 

g ” ( ~ - ~ ~ ) + g ’ ( 3 ~ ~ +  1 + & “ - 1 ) - 4 ~  = 0, 

with solutions 

gl(z) = 1 - z 2 / s ; ,  
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where si = i01-l - 1. I n  general we reject g, to maintain analyticity a t  z = 0. A 
volume-preserving solution must satisfy 

lo1 R(z)  g ( z )  dz = 0 

Hence, when G, = 0, instability occurs a t  a = &, when 

g = 1-5522. 

This corresponds to Buckmaster's shape-preserving solution and to G* = 0.148. 
However, if 01 = (corresponding to violation of (9)), we can evaluate the integral 
for g and obtain 

g = B((1-22) log ( l - z 2 ) + 1 ) + ( 1 - B ) ( l - 2 2 ) .  ( 1 1 )  

This is analytic a t  z = 0 and has an adjustable parameter B. It is straightforward 
to show that B = -14.36 is volume-preserving (10). I n  figure 9 we show this 
perturbation. There is a very rapid growth at the end of the drop, together with a 
slight decrease in the radius of the rest of the drop. This type of break-up is not usually 
observed when G, = 0 because the shape-preserving instability occurs first. Our 
numerical calculations show that tip growth will occur if G: > 0.1. 

We cannot easily find g when G, =I= 0, as we have no analytic expression for R ,  but 
the degree of freedom represented by B will ensure that there is a volume-preserving 
perturbation. The numerical calculations predict that G,*Z*2 is still small at break-up. 
An attempt to use this as a small perturbation parameter went singular as a: 
approached 4. 

4. Time-dependent studies 
The above arguments, while plausible, are still somewhat vague, and in order to 

confirm them a time-dependent numerical study was performed. Following Acrivos 
& Lo we non-dimensionalize time by l /Gl ,  lengths in the radial direction by ah:, 
lengths in the axial direction by ah-$ and pressures by 2,uG1. As before we take 
G* = G,,uahi/y, G,* = G, a2/Glhz. The governing equations become 

( z+G,z3 )  R p 2 + W 4  

R +  R'(z+ G,* 2,) + (1 +$G: 9) R+i /G:  -pi, R = 0. 

The numerical scheme was taken directly from Hinch & Acrivos (1980). We represent 
R by the expansion 

R(z , t )  = R, ( t )+Rl ( t ) z2+  . . . + R N ( t ) ~ 2 N .  

This is substituted into the governing equations. R ,  is obtained by comparing 
cwefficients of powers of z .  The program therefore has to be able to multiply and divide 
two polynomials. R is evaluated for two arbitrary values of p,, and then, making use 
of the linearity of R in p,, we choose that linear combination of the solutions which 
preserves the volume of the drop by ensuring 

1 

BRdz = 0. 
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FIGURE 10. Unstable drop growth when G3 = 0. The flow strength is increased from G* = 0.14 to 
G* = 0.16 at time t = 0. One quadrant of the drop shape is shown a t  t = 0, 2, 4 and 6. 

0 0.1 0.2 03 0.4 0.5 0.6 

FIGURE 11. Unstable drop growth when Q,* = - 1 .O. The flow strength is increased from G* = 0.09 
to 0.11 a t  time t = 0. The drop shape is shown at t = 0, 1 ,  2, 3, 4, 5 ,  6, 6.7 and 6.8. 

z 

While provision was made to  correct any slow drift in the drop volume, this correction 
was never required cxcept a t  the first time step if the initial drop shape was not 
specified with sufficient accuracy. 

The program was checked against the analytic solution available for G, = 0. For 
N = 11 break-up occurred when G* was between 0.147 and 0.148. The equilibrium 
length at G* = 0.14 agreed with the analytic result to 3 significant figures. Results 
were identical for other values of N ,  and this reminds us that for this case N = 1 would 
suffice. In  figure 10 we watch the evolution of the drop shape with time t .  At t = 0 
the drop has the equilibrium shape corresponding to  G* = 0.14. The flow rate G* is 
increased to 0.16 and the shape & ( z )  is plotted at times t = 0 , 2 , 4  and 6. The step 
length was At = 0.05. Halving this length gave identical results. The drop maintains 
its parabolic shape. 

When Gf = - 1 results for equilibrium drop lengths with N = 7 and with N = 13 
were identical. Increasing N to 13 did not change the values of R, up to R,. Break-up 
is predicted between G* = 0.96 and 0.97, which may be compared with the value 0.98 
obtained in $3.  I n  figure 11 we watch the evolution of a drop that is initially in 
equilibrium a t  G* = 0.09. At time zero the flow strength is increased to 0.11, and drop 
shapes are shown a t  subsequent times. The computations eventually broke down 
because of numerical overflow. The drop length is increasing gradually, and it appears 
that  the drop will snap a t  the centre. 

More difficulty was encountered for the case Cr: = + 1 .  Low values of iV showed 
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FIGURE 12. Deformation curves for stable drop lengths as given by the time-dependent scheme of 
$5.  a, points obtained by the finite-difference scheme of $3  (c.f. figure 5). G,* = 1.0. 
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2 

FIGURE 13. Unstable drop growth when G,* = 1.0. The flow strength is increased from G* = 0.21 
to 0.83 a t  time t = 0. The drop shape is shown at t = 0, 0.2, 0.4, 0.6, 0.8 and 1 .O. 

'1 
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0 0.50 0.55 0.60 
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FIGURE 14. Unstable drop growth when G; = 1 .O. Detail of tip growth from figure 13. 

no unusual behaviour at the point where break-up was expected. Results are shown 
in figure 12. Those for N = 11, 13 and 14 are identical with those for iV = 15. Also 
shown are the calculations of $3, which are in good agreement but which end a t  
G* = 0.19 rather than the 0.212 found in this section. In  $3  we showed that the results 
did not reach all the way to  the singularity (for the case G, = 0). On the other hand, 
the end of the drop is the place where the expansions of this section are most, likely 
to break down. 
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FIGURE 15. Drop of water surrounded by castor oil, at the centre of the 4-roll mill, at 
increasing flow strengths. 

In  figure 13 we watch evolution of a drop when G,* = + 1 .  The drop starts in 
equilibrium at G* = 0.21, and the flow strength is increased to G* = 0.23 a t  time zero. 
Only the tip of the drop is being pulled out, and a cusp develops. The length of the 
drop is found numerically by solving R(1) = 0. The root becomes a double root, and 
vanishes. Figure 14 is an enlargement of the relevant portion of figure 13. Just  as 
in 93, we find that the drop breaks owing to  rapid growth solely a t  its tip. 
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5 .  Experiments 
A few simple observations of drop shape were made in a 4-roll mill with dimensions 

similar to those of Taylor’s (1934) mill. The rolls of diameter 24 mm were on axes 
32 mm apart in a perspex box with dimensions 75 x 75 x 38 mm, and the centres of 
the lower rolls were 22 mm above the base of the box. The speeds of the left and right 
pairs of rolls could be varied independently, but were not calibrated. Our results are 
therefore only qualitative. Because the maximum speed of the rolls was low, i t  was 
possible to break only large drops, of a size comparable with the gap in the 4-roll 
mill. The photographs show water drops in castor oil, for which the viscosity ratio 
h is 1.2 x lo3. 

I n  figure 15 we show a drop a t  the centre of the apparatus. A pointed end develops 
in figure 15(d). In figure 15(e) (which is the same drop, but which was not taken 
immediately after figure 15 ( d ) )  we see the ejection of a column of water. This eventu- 
ally breaks via the Rayleigh instability into a series of small droplets, though not 
usually until after it has passed through the nip. 

Because the density of castor oil is about 960 kg mP3, the water drop will sink to 
the bottom of the mill when the rolls are stationary. Surface tension is not sufficiently 
strong to keep a large drop spherical (figure 16a). The drop can then be deformed, 
using gravity to keep it stationary. The deformation point at increasing flow 
strengths is shown in figures 16(b-e). A point has developed in figure 16(c). The 
stationary tip can be observed through a travelling microscope, and appears to have 
a finite radius. In  figure 16(d) a thread is ejected from the drop tip. The thread is 
thin and uniform, and consequently breaks into drops of uniform size. Because the 
volume of the main drop decreases very slowly the process is steady and observations 
can be made until recirculating drops obscure the field of view. The entire system 
of drop and column appears cylindrically symmetric, though the tip of the drop is 
obscured by the rolls when looking from the side. If the roll speed is increased the 
column diameter grows and the resulting drops are larger (figure 16e) .  Decreasing 
the speed reduces the diameter, though a t  a critical speed the column breaks off and 
disappears, rather than becoming infinitesimally thin. 

The photographs show a fresh drop. If left overnight a skin develops. Switching 
on the rolls forces the skin to the tip of the drop, from where i t  is pulled off, exposing 
a clean interface. 

The extension rate along the centreline of a 4-1-011 mill has been measured by Fuller 
et al. (1980). Their roll configuration is nearly a scaled form of that used here, though 
their surrounding walls are further away. The extension rate increases away from the 
centre of the mill and the break-up mechanism discussed in $33 and 4 could operate 
here. The drop in figure 16(c) resembles those of figures 3 and 8. However, the 
mechanism of break-up observed in figure 16 is probably not that found numerically. 
It is hard, because of parallax, to tell just where our  drop breaks, but i t  is dose to  
the point of maximum extension rate found by Fuller et al. The pressure gradient 
becomes negative a t  this point, and the tip of the drop will flow rapidly into the region 
of low pressure, as discussed in $2. 

Taylor’s (1934) tip streaming (the ejection of a series of individual drops) was never 
observed in these experiments with either water or silicone-oil drops. We cannot tell 
whether to associate i t  with the numerically predicted mechanisms of $93 and 4, or 
with the two-stage process of ejection of a liquid column, followed by Rayleigh 
break-up, observed experimentally in $5. 
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